Digital Electronics By Br Gupta Pdf 21 EXCLUSIVE
LINK >>>>> https://urllie.com/2t7bO5
Our solutions help increase the visibility of your digital media across fast-moving and emerging channels like CTV, gaming, and audio while keeping your ads safe and fraud-free. Optimize your campaigns to drive outcomes with granular data delivered in real time.
Digital technologies are being harnessed to support the public-health response to COVID-19 worldwide, including population surveillance, case identification, contact tracing and evaluation of interventions on the basis of mobility data and communication with the public. These rapid responses leverage billions of mobile phones, large online datasets, connected devices, relatively low-cost computing resources and advances in machine learning and natural language processing. This Review aims to capture the breadth of digital innovations for the public-health response to COVID-19 worldwide and their limitations, and barriers to their implementation, including legal, ethical and privacy barriers, as well as organizational and workforce barriers. The future of public health is likely to become increasingly digital, and we review the need for the alignment of international strategies for the regulation, evaluation and use of digital technologies to strengthen pandemic management, and future preparedness for COVID-19 and other infectious diseases.
Here we critically review how digital technologies are being harnessed for the public-health response to COVID-19 worldwide (Fig. 1). We discuss the breadth of innovations and their respective limitations. This systems-level approach is needed to inform how digital strategies can be incorporated into COVID-19-control strategies, and to help prepare for future epidemics.
Many approaches use a combination of digital technologies and may rely on telecommunications infrastructure and internet availability. Machine learning is shown as a separate branch for clarity, although it also underpins many of the other technologies. Much of the data generated from these technologies feeds into data dashboards. SMS, short message service.
A core public-health function of outbreak management is understanding infection transmission in time, place and person, and identifying risk factors for the disease to guide effective interventions. A range of digital data sources are being used to enhance and interpret key epidemiological data gathered by public-health authorities for COVID-19.
There has been increasing interest in decentralized, digitally connected rapid diagnostic tests to widen access to testing, increase capacity and ease the strain on healthcare systems and diagnostic laboratories54,55,56. Several point-of-care COVID-19 PCR tests are in development57,58; however, their use is still limited to healthcare settings. Drive-through testing facilities and self-swab kits have widened access to testing. There are inherent delays between sampling, sending samples to centralized labs, waiting for results and follow-up. By contrast, point-of-care rapid diagnostic antibody tests could be implemented in home or community or social-care settings and would give results within minutes. Linking to smartphones with automatic readout through the use of image processing and machine-learning methods59,60 could allow mass testing to be linked with geospatial and patient information rapidly reported to both clinical systems and public-health systems and could speed up results. For this to work effectively, standardization of data and integration of data into electronic patient records are required.
Digital contact tracing automates tracing on a scale and speed not easily replicable without digital tools71. It reduces reliance on human recall, particularly in densely populated areas with mobile populations. In the COVID-19 pandemic, digital contact-tracing apps have been developed for use in several countries; these apps rely on approaches and technologies not previously tried on this scale and are controversial in terms of privacy. Evaluating their accuracy and effectiveness is essential.
Effective implementation of interventions during a pandemic relies on public education and cooperation, supported by an appropriate communications strategy that includes active community participation to ensure public trust. With 4.1 billion people accessing the internet97 and 5.2 billion unique mobile subscribers15, targeted communication through digital platforms has the potential to rapidly reach billions and encourage community mobilization (Fig. 3). Key challenges persist, including the rise of potentially harmful misinformation98,99 and digital inequalities100 (discussed below).
Mobile subscriptions per 100 people (blue; International Telecoms Union150, 2018) and reported COVID-19 cases by country (red; WHO151, 8 June 2020). COVID-19 is a global pandemic, yet some countries may be better resourced than others to respond with digital health interventions. There may be intra-country inequalities in mobile subscription rates. Case detection and reporting practices differ among countries, with variable under-reporting of true cumulative case counts.
Digital communication platforms are also supporting adherence to social-distancing measures. Video conferencing is allowing people to work and attend classes from home111, online services are supporting mental health112 and digital platforms are enabling community-mobilization efforts by providing ways to assist those in need113. Nevertheless, the security and privacy of freely available communication platforms remains a concern, particularly for the flow of confidential healthcare information.
Digital technologies join a long line of public-health innovations that have been at the heart of disease-prevention-and-containment strategies for centuries. Public health has been slower to take up digital innovations than have other sectors, with the first WHO guidelines on digital health interventions for health-system strengthening published in 2019 (refs. 114,115). The unprecedented humanitarian and economic needs presented by COVID-19 are driving the development and adoption of new digital technologies at scale and speed. We have highlighted the potential of digital technologies to support epidemiological intelligence with online datasets, identify cases and clusters of infections, rapidly trace contacts, monitor travel patterns during lockdown and enable public-health messaging at scale. Barriers to the widespread use of digital solutions remain.
Digital data sources, like any data source, need to be integrated and interoperable, such as with electronic patient records. Analysis and use of these data will depend on the digital infrastructure and readiness of public-health systems, spanning secondary, primary and social-care systems. The logistics of delivery to ensure population impact are often given too little attention and can lead to over-focus on the individual technology and not its effective operation in a system. The coordination of interventions is also a challenge, with multiple symptom-reporting sites in a single country, which risks fragmentation.
Looking ahead, there is a need for a systems-level approach for the vision of the ideal fit-for-purpose digital public-health system117 that links symptom-tracking apps, rapid testing and case isolation, contact tracing and monitoring of aggregated population-mobility levels, access to care and long-term follow-up and monitoring, with public communication (Fig. 4). These types of integrated online care pathways are not new concepts, having been shown to be highly acceptable and feasible for other infectious diseases, such as chlamydia118.
Digital data are created by the public, both at the population level and at the individual level, for epidemiological intelligence and public-health interventions, and for the support of clinical case management. They are also informed by conventional surveillance via laboratory and clinical notification. This feeds into public-health decision-making and communication with the public through digital channels. Other relevant sources of information include population, demographic, economic, social, transport, weather and environmental data.
Evidence of the effectiveness of any new technology is needed for wider adoption, but as the current pandemic is ongoing, many digital technologies have not yet been peer-reviewed, been integrated into public-health systems, undergone rigorous testing127 or been evaluated by digital health-evidence frameworks, such as the evidence standards framework for digital health technologies of the National Institute for Health and Care Excellence128. Contact-tracing apps have been launched in at least 40 countries129, but there is currently no evidence of the effectiveness of these apps130, such as the yield of identified cases and contacts, costs, compliance with advice, empirical estimates of a reduction in the R value or a comparison with traditional methods. Although it is challenging, due to the urgency of the pandemic, evaluation of the effectiveness of interventions is essential. Researchers, companies and governments should publish the effectiveness of their technologies in peer-reviewed journals and through appropriate clinical evaluation.
The spread of the COVID-19 pandemic has exposed the need for government leadership to accelerate the evaluation and adoption of digital technologies. Successful implementation strategies will require carefully accelerated and coordinated policies, with collaboration among multiple areas of governments, regulators, companies, non-governmental organizations and patient groups. Public health has long been under-funded compared with the funding of other areas of health145. Long-term changes will necessitate investment in national and international digital centers of excellence, with the necessary balance of partners and pre-agreed access to digital datasets. A substantial investment in workforce education and skills is essential for growing digital public-health leadership146. 2b1af7f3a8